The three types of sea vegetables grown by FAU’s Harbor Branch scientists are sea asparagus, which look like regular asparagus, sea purslane leaves that have red on the ends; and saltwort with the smaller leaves.

FL - Could These ‘Salt-loving’ Edible Sea Vegetables be the New Kale?

FAU Harbor Branch Researchers Complete 10-Week Study on Sea Asparagus, Sea Purslane and Saltwort

Skip the salt! Three species of vegetables from the sea could just be the new kale with the added benefit of a salty flavor. Researchers from Florida Atlantic University’s Harbor Branch Oceanographic Institute recently completed a 10-week study to determine the optimal growing conditions for three species of sea vegetables: sea asparagus (Salicornia bigelovii), sea purslane (Sesuvium portulacastrum) and saltwort (Batis maritima). These sea vegetables are eaten in Europe, Asia and Hawaii and could soon be a great addition to salads, soups, pasta, rice and other dishes in the continental United States.

These nutritious plants for human consumption do not require fresh water and instead are grown in salt water. These sea vegetables are halophyte plants or “salt-loving” plants, which is what gives them their salty flavor. Considered a vegetable, herb or an edible garnish, they are found in nature in the salt marshes and thrive in saltwater with the right balance of nutrients. They can be eaten raw, blanched, sautéed, or cooked in a dish.

The study, which is part of FAU’s Integrated Multi-Trophic Aquaculture system project to optimize sustainability and aquaculture production, has been testing three different substrates to grow the sea vegetables: sand, clay pebbles, and water only. The work is an ambitious system that produces multiple species simultaneously and is designed according to the premise that one “species’ trash is another one’s treasure.” Greater sustainability has been the driver of aquaculture systems development at FAU’s Harbor Branch, leading to advances that have included minimizing both water use through recirculation techniques and power use via improved efficiency.

Read the full story here.